PROBABILITY DISTRIBUTION Section – A (Question – Answers)

S.No	Questions	Answer
1.	If $f(x) = \begin{cases} kx^2, 0 < x < 3\\ 0, elsewhere \end{cases}$ is a probability density function then the value of k is	$\frac{1}{9}$
2.	If $f(x) = \frac{A}{\pi} \frac{1}{16 + x^2}$, $-\infty < x < \infty$ is a p.d.f of a continuous random variable X, then the value of A is	4
3.	A Random variable X has the following probability distribution $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1}{2}$
4.	A random variable X has the following probability mass function as follows: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
5.	Let X is a discrete random variable which takes the values of 0, 1, 2 and $P(X = 0) = \frac{144}{169}$, $P(X = 1) = \frac{1}{169}$, then the value of $P(X = 2)$ is	$\frac{24}{169}$
6.	A random variable X has the following p.d.f $X 0 1 2 3 4 5 6 7$ $P(X=x) 0 k 2k 2k 3k K^2 2 K^2 7 K^2+k$ The value of k is	$\frac{1}{10}$
7.	Given $E(X + C) = 8$ and $E(X - C) = 12$, then the value of C is	-2
8.	X is a random variable taking the values 3, 4, and 12 with probabilities $\frac{1}{3}$, $\frac{1}{4}$ and $\frac{5}{12}$. Then E(X) is	7
9.	Variance of the random variable X is 4. Its mean is 2. Then $E(X^2)$ is	8
10.	$\mu_2 = 20$, $\mu_2 = 276$ for a discrete random variable X. Then the mean of the random variable X is	16
11.	Var (4X + 3) is	16 Var (X)
12.	In 5 throws of a die, getting 1 or 2 is a success. The mean number of successes is	$\frac{5}{3}$
13	The mean of a B inomial Distribution is 5 and its Standard Deviation is 2. The value of n and p are	$(25, \frac{1}{5})$
14.	If the mean and standard deviation of a Binomial Distribution are 12 and 2 respectively. Then the value of its parameters p is	$\frac{2}{3}$
15.	In 16 throws of a die getting an even number is considered a success. Then the variance of the successes is	4
16.	A box contains 6 red and 4 white balls. If 3 balls are drawn at random, the probability of getting 2 white balls without replacement is	$\frac{3}{10}$

15	If 2 cards are drawn from a well shuffled pack of 52 cards, the probability that the are	25
17.	of the same color without replacement is	51
18.	In a Poisson Distribution $P(X=0) = k$, then the variance is	$\log \frac{1}{L}$
	If a random variable X follows Poisson Distribution such that $E(X^2) = 30$ then the	K
19.	variance of the distribution is	5
	The distribution function F(X) of a random variable X is	A non-
20.		decreasing
		tunction
21.	For a Poisson distribution with parameter $\lambda = 0.25$ the value of the 2 th moments about the origin is	0.3125
22	$\frac{1}{1}$	
22.	In a Poisson Distribution if $P(X = 2) = P(X = 3)$ then the value of its parameter λ is	
23.	If f(x) is a p.d.f of a normal distribution with mean μ then $\int_{-\infty}^{\infty} f(x) dx$ is	1
	$-\frac{1}{2}(x-100)^2$	1
24	The random variable X follows normal distribution $f(x) = ce - \frac{2}{2}$. Then the	$\frac{1}{5\sqrt{2\pi}}$
	value of C is	5\2/
25	If $f(u)$ is a p d f of a normal variate V and V. $N(u = 2^{2})$ then μ	
25.	In $f(x)$ is a p.u.t of a normal variate X and X ~N ($\mu c \sigma$), then $\int_{-\infty}^{\infty} f(x) dx$ is	0.5
	The marks secured by 400 students in a Mathematics test were normally distributed	
26.	with mean 65. If 120 students got more marks above 85, then number of students	80
	securing marks between 45 and 65 is	00

Section - F

1. A random variable has the following Probability density function

				and the second sec			-					
		X	0	1	2	3	4	5	6	7	8	
		$\overline{P}(X)$	a	3a	5a 7	'a	9a	11a	13a	15a	17a	
(i)	Find the value	of 'a'			at the second							
(ii)	Find $P(X < 3)$	and (i	ii) l	P(3	< X <	7)						
		A								$e^{-\alpha x}$	> 0	
2. For the	following distr	bution f	find	mea	in and	var	iance	f(x))={ ¹	ε, λ	/0	
								-	[0	,el	sewh	ere
									ſ	1		
2 Ear th	a following dist	ribution	find	ma	on and	1/01	riona	o f()	$-\frac{1}{2}$	$\frac{1}{4},-12$	2 < x <	:12
5. FO III	e following dist	Ibution	mu		an anu	va	lanc		$(j-1)^2$.4		
	X								[0	,el	sewhe	re
4 Four c	oins are tossed s	imultan	อดเมร	lv V	What is	: th	e nro	babil	ity of	oettin	σ (a) e	vact

Four coins are tossed simultaneously. What is the probability of getting (a) exactly 2 heads (b) atleast two heads (c) at most two heads.

- 5. The life of army shoes is normally distributed with mean 8 months and standard deviation 2 months. If 500 pairs are issued, how many pairs would be expected to need replacement within 12 months. [P(0 < z < 2) = 0.4772]
- 6. Marks in an aptitude test given to 800 students of a school was found to be normally distributed. 10% of

the students scored below 40 marks and and 10% of the students scored above 90 marks. Find the number of students scored between 40 and 90.

Section – C

1.A rand	om vari	able X has	the followi	ng p	proba	bility	mass	s func	tion					
			Х	0	1	2	3	4	5	6			\checkmark	
			P(X = x)	k	3 <i>k</i>	5 k	7 k	9 <i>k</i>	11 <i>k</i>	13 <i>k</i>				
	(i)	Find <i>k</i> .	· · ·											
	(ii)	Evaluate	P(X < 4), P	(X	≥5)	and F	P (3 <	$X \leq$	6)		1	4	€ ₹	A STATE
	(;;;)	What is t	na amallaat	vol	uo of	v for	which	h D(V < w	1			· • •	×
	(111)	vv flat 18 ti	le smanest	vai	ue oi	X 101	winc	ш <i>Г</i> (.	$\Lambda \geq \lambda$	$\frac{1}{2}$				
2.A urn	contains	s 4 white a	nd 3 red bal	ls. I	Find	the pr	obab	ility c	listribu	ution of	the nur	nber of	f red ball	s in
three	draws w	hen a ball	is drawn at	ran	dom	with	repla	cemer	nt. Als	o find it	ts mear	and va	ariance.	
									4		$\mathbf{\lambda}$			
								f	$(\mathbf{r}) = \int_{-\infty}^{\infty}$	-kxato	-Broo	$\alpha B > 0$	า	
3.The pro	obability	y density fu	nction of a	ran	ndom	varia	ble x	is	$\lambda = 1$,,,,,	$\mu, \rho > 0$		
								₽₽, Ì						
Find (ï) k (ii)	P(X > 10)						- M		A PAR				
T IIIG ((I) IX (II)	1 (11 / 10)			4	A	A	N.						
4.The tot	al life ti	me (in yea	r) of 5 year	s ol	d dog	g of a	certa	in bre	ed is a	a randor	n varia	ble who	ose distri	bution
		× 2	0.	for	$r x \leq \frac{1}{2}$	5	1		×					
Funct	ion is gi	ven by $f(x)$	$() = \begin{cases} 2 & 2 \\ 2 & 2 \end{cases}$	<i>J</i> = 1		Fina	d the	nroha	hility	that suc	h a five	e vear o	old dog w	vill live
T unior	1011 15 51		$\left 1-\frac{23}{2}\right $	for	x > 5			P1000	lonny	that bae		e yeur e	na aog n	
	1.10	(**) 1			····		1	1 /	1	0 / 15				
(1) bey	yond 10	years (11) I	ess than 8 y	rear	'S (111)	any	where	e betv	veen I	2 to 15	years.			
5 The n	umbar c	f accidents	in a vear	PWO	lying	tovi	drivo	re in c	o city f	ollows	a Doiss	on dist	ribution y	with
J. The h Mean	equal to	$r_{\rm accluents}$	1000 taxi di		rs fin	d ann	rovir	nately	the n	umber (a I UISS of drive	on uisu rs with		WILLI
(i) no	acciden	t in a year	(ii) m	ore	than	3 acc	ident	s in a	voor				$[a^{-3} -$	0 0/081
(1) 110	acciden	it in a year		ore	ulall	Jacc	lucin	5 III a	year				[e –	0.0490].
6 If the t	umber	of incomin	a huses per	mi	nute	at a h	us tor	minu	c ic a r	andom	variabl	e havin	na a noise	n
distribu	ition wi	th $\lambda = 0.9$	Find the pr	oha	hility	ai a U v that '	us ici there	will 1	5 15 a 1 he	anuom	variaoi		ig a poise	511
(i) Fx	actly 9 i	incoming h	uses durino	r a r	period	l of 5	minu	ites						
(1) Fe	wer tha	n 10 incom	ing buses d	lari	ngai	period	l of 8	minu	ites					
(iii) A	t least 1	4 incomin	g buses dur	ing	a per	iod o	f 11 r	ninut	es.					
				υ	I									
7. The m	ean wei	ght of 500	male studer	nts i	in a c	ertain	n colle	ege in	i 151 p	ounds a	and the	standa	rd deviat	ion is 15
pounc	ls. Assu	ming the w	eights are r	orr	nally	distri	ibuted	l, finc	1 how	many st	tudents	weight	t (i) betw	een 120
and 1	55 pour	nds (ii) moi	than 185	pot	inds.									

Table value	Ζ	2.067	0.2667	2.2667		
Table value	Area	0.4803	0.1026	0.4881		

8. Find c, μ and σ^2 of the normal distribution whose probability function is given by

 $f(x) = c e^{-x^2 + 3x}, -\infty < X < \infty.$

9. Find $k, \mu and \sigma^2$ of the normal distribution whose probability function is given by $f(x) = ke^{-2x^2+4x}, -\infty < X < \infty$.

